翻訳と辞書
Words near each other
・ Banabar
・ Banabar, Khalajastan
・ Banabar, Salafchegan
・ Banabil
・ Banabo
・ Banabona
・ Banabuiú
・ Banabuiú River
・ Banacek
・ Banach *-algebra
・ Banach algebra
・ Banach algebra cohomology
・ Banach bundle
・ Banach bundle (non-commutative geometry)
・ Banach fixed-point theorem
Banach function algebra
・ Banach game
・ Banach Journal of Mathematical Analysis
・ Banach limit
・ Banach manifold
・ Banach measure
・ Banach space
・ Banach's matchbox problem
・ Banachek
・ Banachiewicz (crater)
・ Banachy
・ Banach–Alaoglu theorem
・ Banach–Mazur compactum
・ Banach–Mazur game
・ Banach–Mazur theorem


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Banach function algebra : ウィキペディア英語版
Banach function algebra
In functional analysis a Banach function algebra on a compact Hausdorff space ''X'' is unital subalgebra, ''A'' of the commutative C
*-algebra
''C(X)'' of all continuous, complex valued functions from ''X'', together with a norm on ''A'' which makes it a Banach algebra.
A function algebra is said to vanish at a point p if f(p) = 0 for all (f\in A) . A function algebra separates points if for each distinct pair of points (p,q \in X) , there is a function (f\in A) such that f(p) \neq f(q) .
For every x\in X define \varepsilon_x(f)=f(x)\ (f\in A). Then \varepsilon_x
is a non-zero homomorphism (character) on A.
Theorem: A Banach function algebra is semisimple (that is its Jacobson radical is equal to zero) and each commutative unital, semisimple Banach algebra is isomorphic (via the Gelfand transform) to a Banach function algebra on its character space (the space of algebra homomorphisms from ''A'' into the complex numbers given the relative weak
* topology
).
If the norm on A is the uniform norm (or sup-norm) on X, then A is called
a uniform algebra. Uniform algebras are an important special case of Banach function algebras.
==References==

* H.G. Dales ''Banach algebras and automatic continuity''

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Banach function algebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.